NANYTE BEAM

DESKTOP MASKLESS LITHOGRAPHY

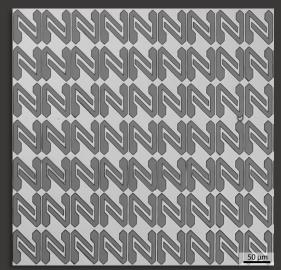
Maskless lithography enables nanopatterning at will, without the need for slow and expensive photomasks. This convenience is especially useful for research and rapid prototyping use. The Nanyte Beam compliments the existing benefits by bringing it to the desktop without any compromise in performance.

The Beam Engine focuses a UV laser beam into a diffraction-limited spot and scans the spot to expose any arbitrary pattern on a photoresist. To expose large wafers, precision steppers move the wafer and allows multiple exposures to be stitched. The Beam Engine is capable of producing features smaller than (CD) $0.8~\mu m$ across a 5'' wafer.

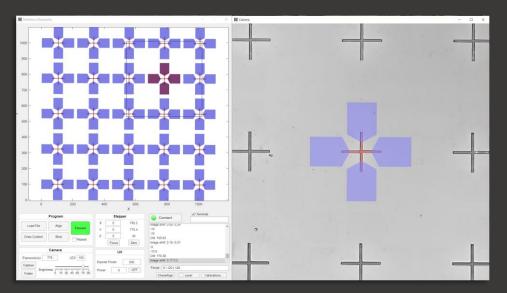
Compact.

Full-featured maskless lithography, smaller than a desktop computer.

Powerful.

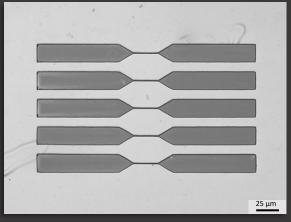

Sub-micron resolution while exposes a writefield in less than two seconds.

Ultrafast autofocus.


Piezo actuators reach focus in less than a second when combined with our closed-looped focus optics.

No-fuss multilayer.

Semi-automatic alignment allows multilayer alignment to be completed within minutes.

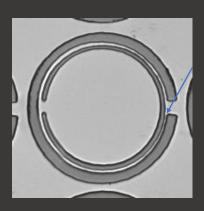


Array of resist micropatterns on silicon substrate. Each cell is 50 \times 63 μ m, with 3 μ m spacing between adjacent patterns. Resist used: AZ5214E

The included software makes quick work of any patterning job; just load, align and expose. Navigation is similar to CNC systems.

During multilayer exposures, the GDS pattern is overlaid for visualization. The control GUI (left window) has a minimap of the loaded GDS that allows navigation to any area on the wafer with 1-click.

0.8 μm tapered middle section with 20 \times 90 μm contact pads on the side. Resist used: AZ5214E



PATTERNING

Minimum	Linewidth	2 μm guaranteed 0.8 μm achievable
Minimu	ım Pitch	1.6 μm achievable
Exposure Time		< 2 s for 1 writefield
Maximum	writefield	400 μm $ imes$ 400 μm
Laser Wa	evelength	405 nm
Laser Galvo	Step size	8 nm
	Repeatability	< 100 nm (static)
	Speed	up to 200 mm/s

STEPPING

	Encoder Resolution	0.1 μm	
Motorized	Stage		
Stepper	Repeatability	Better than 0.3 μm	
	(1σ)		
	Movement area	120 mm $ imes$ 120 mm	
Largest sample size		130 mm × 130 mm (> 5")	
Wafer alignment		Multilayer processes supported	

Split-ring resonator arrays. The separation distance on the right is 1.5 μ m (arrow), separation distance on the left is 2 μ m. The outer ring is 80 μ m across.

GENERAL

Accepted file formats		.bmp, .png, .tiff, .gds Custom shapes can directly be drawn in software.
Software	Patterning	Nanyte Beam Xplorer
	Design	KLayout (most powerful), MS Paint/Powerpoint (rapid prototyping)
Weight		Lighter than 20 kg
System size		$330 \times 310 \times 340 \text{ mm}$

