

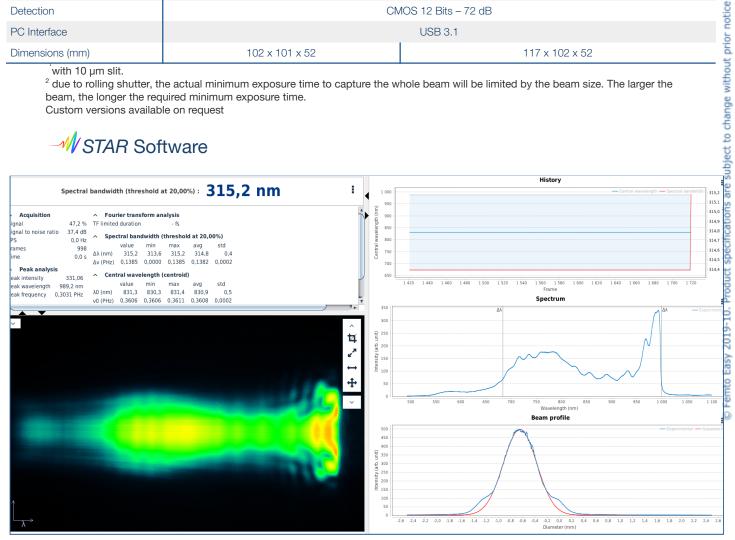
MISS Spectrometer

MISS stands for Mini Imaging Spatial Spectrometer. This innovative spectrometer gives access to the spatially resolved spectrum of your sources. Thanks to its unique compactness, the MISS allows vertical and horizontal spatial chirp measurements at any position of your beam path. It can easily be integrated at different stages of amplified laser systems. Use it in free space mode to take benefit of the spatial resolution, or with a fiber input, like a regular spectrometer.

Key features

- Compact design
- Horizontal and vertical spatial chirp measurement
- User-friendly and powerful software
- High spatial and spectral resolution
- ◆ Different models from 240 to 1100 nm
- Input beam diameter up to 12.7 mm
- ♦ Single shot capable up to 75 kHz

Options


- Fiber input connector
- Trigger

- High dynamic range
- Enhanced detection

Specifications

Models	UV-VIS	IR	Yb	UV-VIS-L	IR-L	TiSa-L	Broadband-L
Туре	standard			large beam (L)			
Spectral range (nm)	240 – 800	545 – 1100	900 – 1090	250 – 700	655 – 1100	360 – 1025	280 – 1100
Camera resolution		2046 x 1542 3 Mpx			2448 x 2048 5 Mpx		5472 x 3478 20 Mpx
Spectral sampling (nm/px)	0.29	0.27	0.1	0.23	0.22	0.28	0.16
Optical spectral resolution (nm) ¹	0.66	0.64	0.23	0.44	0.43	0.44	0.44
Input beam size (mm)	6.6			12.7			
Max spatial resolution (µm)	4.3			5.2			3.6
Exposure time min – max (ms)	0.024 – 1 000			0.013 – 30 000			0.011 ² – 30 000
Shutter type	Global Roll						Rolling
Detection	CMOS 12 Bits - 72 dB						
PC Interface	USB 3.1						
Dimensions (mm)		102 x 101 x 52		117 x 102 x 52			

WSTAR Software

- Live extraction of spatially resolved spectra, spatial chirp, spatially resolved Fourier limited pulse duration analysis...
- Enhanced background & hot pixels treatment, for optimum dynamic and signal to noise ratio
- Client / Server interface, allowing remote control through network
- All data exportable into most common formats

with 10 µm slit.

² due to rolling shutter, the actual minimum exposure time to capture the whole beam will be limited by the beam size. The larger the beam, the longer the required minimum exposure time. Custom versions available on request