Raman Spectrometer 532/785/1064nm
Standard Spectrometer 200-1100nm
High Sensitivity UV Enhanced Spectrometer
BSI Cooled High Sensitivity Spectrometers
Large NA High QE Spectrometer 200-1450nm
Near Infrared Spectrometer 900-2500nm
More
Auto-Fluorescence Microscope
Confocal Raman Microscope
Spinning Disk Confocal Microscope
Industry Line Scan Confocal Microscope
Research Line Scan Confocal Microscope
Laser Point Scanning Confocal Microscope
TCSPC System for SPAD (APD) Testing
Maskless Lithography UV Laser Writer
Laser Doppler Vibrometer 0.1Hz to 5Mhz
OCT Imaging System
NEW Product
X-ray/XRD Heating & Cryo Stage
Optical Heating & Cryo Stage
Electrical Probe Temperature Stage
Adjustable Electrical Probe Station
Tensile Strain Temperature Stage
Fiber Spectrometers (200nm to 5um)
X-Ray/XUV/VUV Spectrometers (1-300nm)
FT Infrared Spectrometer(900-16000nm)
Hyperspectral Camera (220nm-4.2μm)
Monochromator & Spectrograph
Single Photon Detector (SPD)(200-1700nm)
Photomultiplier Tubes (PMT)(160-900nm)
Photodiode Detector (PD) (200nm-12um)
Pyroelectric Infrared Detectors (2-12um)
Single-Photon Avalanche Diode Array
IR Beam Profiler
Terahertz Beam Profiler
Scanning Slit Beam Profiler
UV-VIS Beam Profiler(190-1100nm)
Infrared Beam Profiler(350-1750nm)
Compact Beam Profiler(190-1100nm)
Photodiode Power Sensors 250-2500nm
Power Meter Console
Integrating Spheres (10mm-100mm)
Power Meter Adaptor & Accessories
Thermoelectric laser power meter(0.19-25 μm)
Photoelectric laser power meter(200-1100nm)
VUV/UV Spectrograph
1/8m Monochromator/Spectrograph
1/2m&1/4m Monochromator/Spectrograph
Monochromator Accessories
LIV Test Systems for Laser Diode / LED
White Light Interferometer
Optical Coating CRD Reflectrometer
Optical Test Measurement System
RF Test Measurement System
CW Pigtail Laser Diode (400-1920nm)
CW Laser Diode Module (375-785nm)
CW Multi-Channel Lasers (405-640 nm)
CW Narrow Linewidth Diode Lasers (532-1064 nm)
Nanosecond Pulsed Laser (266nm-3.4μm)
DFB/FP Picosecond Laser (370-1550nm)
Nanosecond Pulse Fiber Laser(1064-2um)
Picosecond Pulse Fiber Laser (515nm - 2um)
Femtosecond Pulse Fiber Laser 780nm-2um
CW Fiber Laser System (405nm - 2um)
CW Narrow Linewidth Lasers (1530nm-2um)
C-Band Tunable Laser (1529 -1567nm)
L-Band Tunable Laser (1554 -1607nm)
Supercontinuum Fiber Lasers 450-2300nm
Short-pulse OPA (650 - 2600nm)
Femtosecond OPA (650 - 2600nm)
Broadband Femtosecond Laser 950-1150nm
Erbium Doped Fiber Amplifier
Ytterbium Doped Fiber Amplifier
Thulium-Doped Fiber Amplifier
Semiconductor Optical Amplifier
Fiber Raman Amplifier
EUV Light Sources(58-130nm)
VUV Light Sources(115-400nm)
ASE Light Sources (830-2000nm)
Microscopy Imaging LED Sources 360-780nm
Collimated LED Sources (240-980nm)
Fiber-Coupled LED Sources (265-940 nm)
Light Field Sythesizer
Hollow-Core Fiber Compressor
High Powered Hollow-Core Fiber Compressor
Ultra-High Contrast 3rd-Order Autocorrelator
Coherent Ultrabroadband XUV Light Source
Enhanced Cavities for Laser Light
Terahertz Quantum Cascade Lasers(1-4.5Thz)
CW IR Quantum Cascade Lasers(3-12μm)
CW LWIR Quantum Cascade Lasers (4-17um)
Fluorescence Upright / Inverted Microscope
Biological Upright / Inverted Microscope
Phase Contrast Microscope
Dark Field Microscope
Polarizing Microscope
Metallographic Upright / Inverted Microscope
Smart 3D Stereo Microscope
USB Digital Microscope With Platform
Built-in Digital Microscope
Plan Apochromatic Objective
Industrial Plan Objective
Biology Plan Objective
Microscope CCD Camera (VIS-NIR)
Microscope CMOS Camera (UV-NIR)
UV & NIR Enhanced CMOS Camera
Hyperspectral Camera for Microscope
Multispectral Camera For Microscope
Microscope Light & Lamp
Soft X-Ray BSI sCMOS Camera (80-1000eV)
High-Speed sCMOS Camera
High Sensitivity sCMOS Camera
38M Pixel large Format sCMOS Camera
Compact BSI/FSI sCMOS Camera
Intensified CMOS Camera (200-1100nm)
Full Frame CCD Camera for UV VIS NIR
Full Frame CCD Camera for VUV EUV X-ray
Full Frame In-vacuum CCD Cameras
Large Format In-vacuum CCD Cameras
HDMI Color CMOS Camera (Monitor)
High Speed Line Scan Camera
Large Format Camera
High Speed Large Format Camera
Frame Grabber
Infrared Pyrometers (-40-3000C)
Infrared linear Array Camera
Infrared Matrix Array Cameras
Blackbody Calibration Sources -15 to 1500°C
Short-Wave Infrared Camera (SWIR)
Mid-Wave Infrared Camera (MWIR)
Long-Wave Infrared Camera (LWIR)
Solar Blind UV Imaging Module 240-280nm
UV-VIS Online Monitoring Module
UV-VIS Dual Channel Camera
UV-VIS-IR Triple Spectral Fusion Camera
Ultraviolet Camera for Drone
Free Space Acousto-Optic Modulators (AOM)
Fiber Coupled Acousto-Optic Modulators
Free Space Acousto-Optic Tunable Filter
Fiber-coupled Acousto-optic Tunable Filter
Acousto-Optic Q-switch (AOQ)
Acousto-Optic Frequency Shift (AOFS)
Electro-optical Amplitude Modulator
Electro-optic Phase Modulator
Ultra-fast Pulse Generator for TCSPC
Single-photon time counter
ID1000 Timing Controller
Phase Spatial Light Modulator
Transmission Amplitude SLM
Reflection Amplitude SLM
Digital Micromirror SLM
Pulsed Voltage
Pulsed Current
General Purpose Pulse Generators
Medium and High Voltage Pulse Generators
High Speed Impulse Generator
Very High Speed Pulse Generators
Function Generators
Pulse Amplifiers
Single-channel Lock-in Amplifier
Dual-channel Lock-in Amplifier
TPX / HDPE Terahertz Plano Convex Lens
Off-Axis Parabolic Mirrors
Terahertz Hollow Retro Reflector
Terahertz Metallic Mirrors
ZnTe / GaSe Terahertz Crystals
Terahertz Beam Expander Reflection
Waveplates
Optical Isolator
Optical Polarizers
Beamsplitter Plate
Beamsplitter Cube
Dichroic Beamsplitters
Ultrathin Beamsplitter Plate
Bandpass Filters Fluorescence Microscope
Filters for Raman Spectroscopy
Narrow Filters for Laser
Filters for FISH
Filters for TIRF Microscope
Filters for FRET Microscope
Laser Crystals
Nonlinear Optical Crystals
Birefringent Crystals
Optical Crystals
Electro-optical Crystals
Micro-Channel Plate (MCP)
Micro-Channel Plate Assembly (MCP)
Fiber Optic Plates (FOP)
Micro Pore Optics
X-Ray Collimators
Hybrid Fiber Components
Electrically Adjustable Optical Delay Line
Manually Adjustable Optic Delay Line
Optical Circulator
Filter Coupler
FA Lens
Zoom Lens
Telecentric Lens Series
In-situ Tensile Heating & Cryo Stage
Single Axis Motorized Piezo Stage
XY Motorized Piezo Stages
Multi Axis Motorized Piezo Stages
Vacuum Non-magnetic Piezo Stage
Nano Electric Actuator
XY Stepper Motor Stages
XYZ 3 Axis Stepper Motor Stages
XY Microscope Piezo Stages
XY Microscope Linear Motor Stages
Motorized Filter Wheel
FWR Motorized filter wheels
13mm Linear Stages
25mm Linear Stages
Rotation and Tilt Stages
Rack and Pinion Stages
Vertical Axis Stages
2-Axis Stages
Solid Vibration Isolation Optical Table
Solid Vibration Isolation Table
Pneumatic Optical table
Pneumatic Optical Table With Pendulum Rod
Honeycomb Optical Breadboard
Lens Mounts
Mirror Mounts
Filter Mounts
1550nm High speed Ps laser (Pulse & CW)
The 1550nm direct-pulsed diode laser system featuring adjustable pulse width, low time jitter, high extinction ratio and high repetition frequency. The minimal pulse width is less than 50 ps but also can be adjusted to a large extent up to 1.5 ns duration for user-specific applications. With minimal short pulse, the repetition rate can go up to 1.25 GHz. Laser pulses can be triggered internally or externally with built in precision delay control. A sync output and a programmable clock output allow to trigger other components such as a TCSPC or testing electronics for single photon system. With built-in EVOA and PD, the optical power and be adjusted easily and shown on the screen for quantum optical applications. Besides pulsed laser mode, continuous wave mode is also supported, of which average power can be set and monitored as well.
Product Highlights
- Minimal pulse width ≤ 50 ps, FWHM
- Laser pulse jitter ≤ 20 ps, RMS
- Optical extinction ratio ≥ 40 dB
- High repetition frequency up to 1.25 GHz
- Internal/external trigger selection with adjustable trigger delay
- Laser sync output and programmable clock output
- Reference clock input and output
- 7” IPS touch screen and graphical user interface
Applications
- Quantum optics, weak coherent pulse
- Heralded single photon generation
- Single photon detector testing system
- Fluorescence lifetime and fluorescence spectroscopy
- Laser ranging system
-Time-resolved single molecule spectroscopy
Typical measurements
Dimensions ( unit: mm)
Product Brochure: 301 datasheet
Optical specifications
Laser output (FC/PC x1)
Electrical Specifications
External trigger mode (pulsed laser mod only)
Trigger input (SMA x1)
Internal Trigger mode (Pulsed Laser mode only)
Note: [1] The maximum adjustable pulse width is limited to 1ns when repetition frequency is more than 200MHz, and the pulse width is fixed to the minimal (<50ps) when frequency is more than 400MHz. [2] Maximum peak power may be reduced by adjusting the internal attenuator. [3] Wavelength short term stability condition: 25℃ after 20 min. warm up, 1000 sec.[4] Output voltage is specified with 50-ohm termination
Hardware specifications
Content Index
● SPAD(APD) Test Objectives and Principle
● TCSPC Testing Solution for Bear Chip SPAD (APD)
● TCSPC Testing Solution for Packaged SPAD (APD) TO46 or T08
SPAD(APD) Test Objectives and Principle
This test system is suitable for the Geiger working mode of SPAD, using gated quenching technology, quasi-single photon source and counting principle, it can measure SPAD 's avalanche voltage value Va, dark count rate DCR , single photon detection efficiency SPDE, after The pulse probability Pa and the time jitter TJ, it can be used as a SPAD (APD) mass production testing platform and a SPAD (APD) performance testing platform.
The test objectives and basic principles of the test system are briefly described as follows:
1) Single Photon Detection Efficiency (SPDE) of SPAD: According to the average number of photons per pulse 𝜇 for a given laser (generally 𝜇 = 0.1), measure the probability of dark counts generated by each gated pulse of SPAD 𝑃𝑑 , and the probability of related counts generated by each light pulse 𝑃𝑒, then the single-photon detection efficiency SPDE can be calculated as:
Generally, the dark counting probability 𝑃𝑑 is much less than 1, and when 𝜇 = 0.1, the optical pulse correlation counting probability 𝑃𝑒 is also much less than 1, then SPAD can be approximated as:
2)Normalized dark count rate DCR of SPAD: Since SPAD works in a gated mode with a certain gate width 𝜏, for uniformity, the dark count rate of SPD 𝑃𝑑, that is, the probability of dark counts generated by each gate pulse, Converted to the dark count rate in the Geiger mode of SPAD, that is, the normalized dark count rate 𝑅𝑑:
3)Pulse probability after SPAD 𝑃𝑎: This parameter generally needs to specify the gating operating frequency, which characterizes the total probability of subsequent avalanche pulses caused by the incidence of effective photons caused by the capture and release of photoelectrons by internal defects in SPAD at a specific gating operating frequency[1]. Let the total count of SPD in unit time be 𝑅𝑠, the dark count in unit time be 𝑅𝑑, and the unit time count related to the photon arrival time is 𝑅𝑒, if the gate frequency is 𝐹𝑔, the incident photon pulse frequency is 𝐹𝑝, then the post-pulse probability 𝑃𝑎 is calculated as:
4)SPAD time jitter: The output jitter of the avalanche signal relative to the optical pulse synchronization signal can be measured in the gated mode. This parameter represents the fluctuation of the SPAD single-photon avalanche relaxation time. Usually, a time-correlated single-photon counter is used to count the effective avalanche signal. FWHM of time histogram 𝑡𝑗𝑖𝑡𝑡𝑒𝑟,𝐹𝑊𝐻𝑀, or use a high bandwidth oscilloscope to count effective snow 𝑡𝑗𝑖𝑡𝑡𝑒𝑟,𝑅𝑀𝑆 of the time offset of the avalanche signal relative to the optical pulse synchronization signal . For the time jitter of the nearly Gaussian distribution, there are generally:
TCSPC Testing Solution for Bear Chip SPAD (APD)
Free-space Bear Chip SPAD TCSPC Testing System
This is composed of a picosecond pulse laser instrument QLD-301, free-space optical setup, Digital delay pulse generator for gate control, Cryo-stage system for 70K cooling, Optical power meter, reference SPD and a set of TCSPC master clock is required.
Fiber-based Bear Chip SPAD TCSPC Testing System
This is composed of a picosecond pulse laser instrument QLD-301, fiber optical setup, Digital delay pulse generator for gate control, Customized fiber Cryo-stage system for 70K cooling, Optical power meter, reference SPD and a set of TCSPC master clock is required.
The QLD-301 picosecond pulsed laser includes:
● Signal generator module (Clock source distribution): It can receive an external reference clock or use an internal clock source to generate a synchronized laser pulse trigger clock and APD gated clock with adjustable relative delay. In general , the frequency of the APD gate control clock is an integer multiple of the laser trigger clock, and the system provides options of 2 times, 5 times, 10 times, 20 times, 50 times, and 100 times;
● Picosecond pulsed laser (Pulsed Laser): It can generate laser pulses synchronized with the trigger clock at the same frequency, the pulse width is less than 50ps, and the extinction ratio is greater than 40dB. In addition, the laser synchronization clock generated by it is used as the input signal of the counting module;
● Optical power monitoring and attenuation control module (ATT): control the attenuation of the laser pulse to attenuate it to the level of single photon and ensure the stability of the pulse power through high-sensitivity optical power monitoring.
Master Clock
● 4 Channel input and 4 Channel output, Channel number customizable, high resolution up to 13ps bin width, timing jitter per channel 5.7ps.
● Maximum input voltage range -3 to 3V (customizable)
High Voltage Pulse Generator
● 4 pulse output and 8 delay outputs, less than 25ps rms jitter, trigger rate up to 10mhz.
● High voltage trigger signals up to 10V. this is important for SPAD testing device.
● Raise and fall time up to 55ps.
Reference SPD Detector
● Wavelength coverage 900 - 1700nm (able to change to VIS range for different application)
● Timing resolution 150ps Dark count rate 20% at 3Khz, 1us to 100us adjustable deadtime
Free space NIR optical system with Cryo-stage
● Um level laser spot size on testing sample, with coaxial NIR vision system for optical alignment
● 2 adjust probe arm for electronics signal testing, Cryo-stage temperature able to reach -77K (LN2)
Customized fiber Cryo-stage system for 70K cooling
● Customized fiber inserts into the testing chamber , with 85 degrees optical output angle.
● Top and side view visible zoom vision system for fiber alignment.
● 2 adjust probe arm for electronics signal testing, Cryo-stage temperature able to reach -77K (LN2).
Performance
The specific performance index parameters are shown in the table below.
TCSPC Testing Solution for Packaged SPAD (APD) TO46 or TO8
The Packaged SPAD test system is composed of picosecond pulse laser instrument QLD-301, gate control generation module NPG-1H20, test main control module ATE-301 and test chassis (including TO46 water-cooled refrigeration unit). In addition, a set of TCSPC instruments is required. Used to test post-pulse and time jitter. Among them, QLD-301 is a picosecond pulse laser with a built-in signal source, which can generate electrical and optical pulses with adjustable delay (currently an independent instrument, which can be upgraded to a module later as a chassis board);
NPG-1H20 can generate a gated pulse signal with adjustable amplitude and pulse width; the ATE-301 part contains APD correlation mode Blocks (high-pressure generation, refrigeration and temperature control, two-channel discrimination counter); the test case includes TO46 refrigeration and signal extraction unit, chassis backplane, etc., of which TO46 refrigeration and signal extraction unit includes: water cooling radiator, thermal insulation structure, TEC Refrigeration unit, spike noise suppression and signal extraction circuit, TO-46 fixture and signal interface, etc. The system composition and principle-block diagram are shown in the following figure:
Figure 1 System composition and principle-block diagram of the SPAD test platform
NPG-1H20 gate control generation module mainly includes:
● Trigger input and monitoring unit, the trigger frequency covers 0.1~100MHz, compatible with any level trigger input;
● The gate control amplitude is adjustable, the adjustment range covers 4~6.4V, better than 100mV/step, the encoder adjustment;
● The gate width is adjustable, the adjustment range covers 0.5~2ns, 10ps/step, and encoder adjustment.
ATE-301 test main control module mainly includes:
● SPAD-related modules: including High Voltage Generation, Cooling and Temperature Control and other modules; the system is based on the gated quenching method so that the SPAD works in the gated mode, and in this mode, the detection efficiency, normalized dark count rate and post-pulse probability of the SPAD are tested;
● Dual channel counter module (dual channel counter): used to count the avalanche count value and can be upgraded to a coincidence counting module later, and automatically measure the post-pulse probability by synchronizing the clock with the laser to automatically find the peak and count the coincidence function.
Figure 2 Schematic Diagram of the Composition of the Scheme
TO-46 test fixture mainly has:
● Water-cooled TEC refrigeration and thermal insulation structure: using industrial grade three-stage refrigeration sheet, combined with water-cooling heat dissipation technology, temperature control of ≤-60 °C can be achieved at room temperature of 20 °C, meeting the low temperature requirements of SPAD; Minimize heat radiation and heat convection.
● SPAD fixture and analog front end: It adopts unique pure copper heat conduction fixture and high-speed balanced differential technology to support SPAD in TO-46 package (maximum outer diameter 6mm, package structure is shown in Appendix 1), and the structure is easy to replace; High suppression of spike noise, which can effectively extract the avalanche signal of SPAD;
● Signal interface: including optical pigtail exit, RF coaxial and DB9 interface, which are used to transmit single-photon signal, gated input signal, avalanche output signal and high voltage and temperature control interface of the system host respectively.
System Connection Block Diagram
The figure below is the system connection block diagram, in which the ATE-301-SYS, NPG-1S20 and TO-46 test fixtures are all located on the test platform chassis, which can reduce the system size and facilitate operation.
ATE-301 TO-46 SPAD test system connection block diagram
Applicable APD Package TO-46 Example Diagram
Appendix A. Calibration method for the average number of photons per pulse of laser pulses
Before the performance test of the SPAD, it is necessary to accurately calibrate the average number of photons per pulse of the laser. The calibration process has the following methods:
1. Indirect power calibration method: Calculate the required output power according to the optical pulse repetition frequency and the average number of photons per pulse[2] , and then calculate the required external attenuation value according to the output power of the QLD-301 (displayed value or measured value), hand-held optical power The attenuation value of the external attenuator is calibrated so that the final output power reaches a predetermined value. The main problem of this method is that it requires additional calibration of the value of the external attenuator, which is complicated in operation.
2. Direct power calibration method: This method uses a high-precision instrument-type optical power meter, such as Keysight 81634B, whose nominal measurement accuracy can reach -110dBm, but the actual measurement accuracy is about -100dBm. If the average number of photons per pulse is required to be 0.1, this method only It can be used to calibrate optical pulses with repetition rate above 10MHz. The main problem of this method is its limited scope of application and high cost.
3. Single-photon counting direct calibration method: This method uses a single-photon detector whose detection efficiency has been calibrated for direct single-photon counting. Because the detection efficiency is known, the average number of photons per pulse can be directly calculated through the counting rate and the optical pulse frequency[3] . The method has fast calibration speed, good repeatability, a wide application range, simple and efficient.
The characteristics of the above three schemes are compared in the following table:
[1] If SPAD is in Geiger mode, this parameter usually needs to be given with a certain dead time parameter, but this system uses gated control mode, and its default dead time is the length of one pulse period, so the dead time is generally the minimum value here. If necessary, the setting of dead time can be increased by parameters.
[2] For example, the average power of the 1550nm optical pulse at 1MHz with μ=0.1 is -108.92dBm
[3] If the single-photon detection efficiency SPDE=10%, the count rate of the 1MHz optical pulse with μ=0.1 is 10KHz.
We are here for you!
Don't have time to search the products one by one? No worries. you can download the full range of SIMTRUM Product Line Cards.
Click it now.
Want to stay closer to the Market Dynamics and Technological Developments? Just take 5 seconds to Sign In as a member of SIMTRUM, we will bring you the most up-to-date news.
(Sign in button on the top right of the screen).
Company
Light Analysis
Microscope
Light Sources
Imaging
Optics