Raman Spectrometer 532/785/1064nm
Standard Spectrometer 200-1100nm
High Sensitivity UV Enhanced Spectrometer
BSI Cooled High Sensitivity Spectrometers
Large NA High QE Spectrometer 200-1450nm
Near Infrared Spectrometer 900-2500nm
More
Laser Point Scanning Confocal Microscope
Laser Line Scan Confocal Microscope
Spinning Disk Confocal Microscope
Structured Illumination Microscope
Confocal Raman Microscope
Multi-Line CW Single-Mode Laser
TCSPC System for SPAD (APD) Testing
Maskless Lithography UV Laser Writer
Laser Doppler Vibrometer 0.1Hz to 5Mhz
OCT Imaging System
NEW Product
X-ray/XRD Heating & Cryo Stage
Optical Heating & Cryo Stage
Electrical Probe Temperature Stage
Adjustable Electrical Probe Station
Tensile Strain Temperature Stage
Fiber Spectrometers (200nm to 5um)
X-Ray/XUV/VUV Spectrometers (1-300nm)
Hyperspectral Camera (220nm-4.2μm)
Multi-Spectral Camera (400-1000nm)
Spectrophotometer (240-2150nm)
Photomultiplier Tubes (PMTs)
Visible Single Photon Detector(SPD)
Infrared Single Photon Detector(SPD)
Photodiode PD (200nm-12um)
Pyroelectric Infrared Detectors (2-12um)
Single Photon Avalanche Diode Detector Array
IR Beam Profiler (2-16um)
Terahertz Beam Profiler(1-18 THz)
Scanning Slit Beam Profiler (190-2500nm)
Photodiode Power Sensors 250-2500nm
Power Meter Console
Integrating Spheres (10mm-100mm)
Power Meter Adaptor & Accessories
1/8m Monochromator/Spectrograph
1/2m&1/4m Monochromator/Spectrograph
Monochromator Accessories
Filter & Wheel
LIV Test Systems for Laser Diode / LED
White Light Interferometer
Optical Coating CRD Reflectrometer
Optical Test Measurement System
RF Test Measurement System
CW Pigtail Laser Diode (400-1920nm)
CW Laser Diode Module (375-785nm)
CW Multi Wavelength Laser
DPSS Nanosecond Pulsed Lasers
DFB/FP Picosecond Laser (370-1550nm)
High-Power Femtosecond Solid-State Lasers
Nanosecond Pulse Fiber Laser(1064-2um)
Picosecond Pulse Fiber Laser (515nm - 2um)
Femtosecond Pulse Fiber Laser 780nm-2um
CW Fiber Laser System (405nm - 2um)
CW Narrow Linewidth Lasers (1530nm-2um)
C-Band Tunable Laser (1529 -1567nm)
L-Band Tunable Laser (1554 -1607nm)
Supercontinuum Fiber Lasers 450-2300nm
Femtosecond OPA (650 - 2600nm)
Short-pulse OPA (650 - 2600nm)
Broadband Femtosecond Laser 950-1150nm
Erbium Doped Fiber Amplifier
Ytterbium Doped Fiber Amplifier
Thulium-Doped Fiber Amplifier
Fiber Raman Amplifier
Semiconductor Optical Amplifier (SOA)
Microscope Light & Lamp (185 - 5500nm)
Single Wavelength LED Source(240-980nm)
Multi-wavelength LEDs Source (240-980nm)
ASE Light Sources (830-2000nm)
IR Emitter Chip (2-14um)
Light Field Sythesizer
Hollow-Core Fiber Compressor
High Powered Hollow-Core Fiber Compressor
Ultra-High Contrast 3rd-Order Autocorrelator
Coherent Ultrabroadband XUV Light Source
Enhanced Cavities for Laser Light
Terahertz Quantum Cascade Lasers(1-4.5Thz)
CW IR Quantum Cascade Lasers(3-12μm)
CW LWIR Quantum Cascade Lasers (10-17um)
Auto-Fluorescence Microscope
Wideband Handheld Confocal Raman Skin Analyzer
Fluorescence Upright / Inverted Microscope
Biological Upright / Inverted Microscope
Phase Contrast Microscope
Dark Field Microscope
Polarizing Microscope
Metallographic Upright / Inverted Microscope
Smart 3D Stereo Microscope
USB Digital Microscope With Platform
Built-in Digital Microscope
Plan Apochromatic Objective
Industrial Plan Objective
Biology Plan Objective
Microscope CCD Camera (VIS-NIR)
Microscope CMOS Camera (UV-NIR)
UV & NIR Enhanced CMOS Camera
Hyperspectral Camera for Microscope
Multispectral Camera For Microscope
Microscope Light & Lamp
Soft X-Ray BSI sCMOS Camera (80-1000eV)
UV-NIR sCMOS Camera (200-1100nm)
Intensified CMOS Camera (200-1100nm)
Imaging Intensifier Tube
Full Frame CCD Camera for UV VIS NIR
Full Frame CCD Camera for VUV EUV X-ray
Full Frame In-vacuum CCD Cameras
Large Format In-vacuum CCD Cameras
HDMI Color CMOS Camera (Monitor)
High Speed Line Scan Camera
Large Format Camera
High Speed Large Format Camera
Frame Grabber
Infrared Pyrometers (-40-3000C)
Infrared linear Array Camera
Infrared Matrix Array Cameras
Blackbody Calibration Sources -15 to 1500°C
Short-Wave Infrared Camera (SWIR)
Mid-Wave Infrared Camera (MWIR)
Long-Wave Infrared Camera (LWIR)
Free Space Acousto-Optic Modulators (AOM)
Fiber Coupled Acousto-Optic Modulators
Acousto-Optic Tunable Filter (AOTF)
Acousto-Optic Q-switch (AOQ)
Acousto-Optic Frequency Shift (AOFS)
Phase Modulators
Electro-optical Amplitude Modulator
Electro-optic Phase Modulator
Ultra-fast Pulse Generator for TCSPC
Multi-Channel Single Photon Counting Device
ID1000 Timing Controller
Phase Modulator
Amplitude Modulator
Education Kits
Pulsed Voltage
Pulsed Current
General Purpose Pulse Generators
Medium and High Voltage Pulse Generators
High Speed Impulse Generator
Very High Speed Pulse Generators
Function Generators
Pulse Amplifiers
TPX / HDPE Terahertz Plano Convex Lens
Off-Axis Parabolic Mirrors
Terahertz Hollow Retro Reflector
Terahertz Metallic Mirrors
ZnTe / GaSe Terahertz Crystals
Terahertz Beam Expander Reflection
Waveplates
Optical Isolator
Optical Polarizers
Beamsplitter Plate
Beamsplitter Cube
Dichroic Beamsplitters
Ultrathin Beamsplitter Plate
Bandpass Filters Fluorescence Microscope
Filters for Raman Spectroscopy
Narrow Filters for Laser
Filters for FISH
Filters for TIRF Microscope
Filters for FRET Microscope
Laser Crystals
Nonlinear Optical Crystals
Birefringent Crystals
Optical Crystals
Electro-optical Crystals
Micro-Channel Plate (MCP)
Micro-Channel Plate Assembly (MCP)
Fiber Optic Plates (FOP)
Micro Pore Optics
X-Ray Collimators
Hybrid Fiber Components
Optical Circulator
Filter Coupler
In-line Polarizer/PBC/PBS
WDM/DWDM/CWDM/Bandpass Filter
FA Lens
Zoom Lens
Telecentric Lens Series
In-situ Tensile Heating & Cryo Stage
Single Axis Motorized Piezo Stage
XY Motorized Piezo Stages
Multi Axis Motorized Piezo Stages
XY Microscope Piezo Stages
Vacuum Non-magnetic Piezo Stage
Nano Electric Actuator
Lens Mounts
Mirror Mounts
Filter Mounts
13mm Linear Stages
25mm Linear Stages
Rotation and Tilt Stages
Rack and Pinion Stages
Vertical Axis Stages
2-Axis Stages
Solid Vibration Isolation Optical Table
Solid Vibration Isolation Table
Pneumatic Optical table
Pneumatic Optical Table With Pendulum Rod
Honeycomb Optical Breadboard
Broad Bandwidth Fiber Laser
The Cyclone is a broad bandwidth femtosecond fibre laser. It provides the shortest pulses on the market generated by a fibre laser, less than 20 fs pulses. Cyclone provides outstanding peak power (>120 kW) over a wide spectrum of950-1150nm.
These parameters allow for increased brightness and reduced photodamage, making the Cyclone laser perfect for multiphoton microscopy, SHG microscopy and a variety of other non-linear processing and spectroscopy applications.
It is a cost-effective, maintenance-free femtosecond fibre laser with best-in-class performance.
Feature
Cost-Effective
-Low-cost/high performance and quality laser
-50kEur - 70kEur
-Minimal cost of ownership
-2 -year standard warranty. Extended warranty: <3kEur/year
-Simple microscope configuration
-No tuning means no beam pointing hence simplified microscope
Robust, Compact and Simple
-Fiber laser –Nearly plug & play
-Straightforward installation (<2hours).
-Air-cooled
->10.000 hours lifetime
Simplified Multicolor Excitation
-Broadband emission.Not tuning
-Simultaneous excitation of blue, green and red labels
-Conventional level sofau to fluorescence
Brightness and Deep Penetration
-NIR 15-20 fs pulses on the sample plane
-10x higher peakpowerand photon flux than 100fs laser
-Lower thermal damage
More Aadvantages
-Light can be delivered to the microscope free-space or with a dispersionless optical fiber
-Pulse duration can be dynamically adjusted with the dispersion pre_x0002_compensator. Minimum pulse duration at the sample plane (15-20fs)
-Pulse duration can be measured at the optical sample
-No wavelength tuning. Simpler, more robust and economical optical set-up
Product specifications and Brochures
Product Brochure Link:
Technical Performance
1.Simultaneous colour excitation
-Cyclone provides a broad bandwidth across 900-1200nm.
All labels (including green fluorophores such as eGFP and blue fluorophores such as DAPI) can be excited simultaneously within this spectral region,using two-photon or three-photon excitation
-Tuning is not required. The target samples are excited and the emitted fluorescence can be collected simultaneously using multiple spectral channels
-Autofluorescence remains similar to conventional tunable excitation since the emission spectrum is independent of the excitation spectrum
-This provides a simpler, more robust and economical optical set-up
Simultaneous Colour Excitation
2.Pulse duration
-Cyclone provides the shortest pulses of an all fiber laser, of the order of15fs at the sample plane
-The pulse duration has been measured using two different methods
1) A suitable Femtochrome autocorrelator
2) Retreiving it from second harmonic generation spectrum
-A dispersión pre-compensator compresses the pulses at the output of the Cyclone. This can be dynamically adjusted to compensate the dispersion introduced by the optics of the microscope and to deliver 15-20fs pulses on the sample plane
Pulse Duration
3.Peak power and photon flux
-The short pulses delivered by the Cyclone generate extremely high peak powers
-For an average power of 50mW, the Cyclone laser provides a peak power of 54kW, compared to 6kW provided by a conventional 100fs laser. 7 times higher
-Consequently, the photon flux is also 7 times higher with the pulses provided by the Cyclone laser, compared to a 100fs laser
Peak Power
Photon Flux
Number of eGFP molecules that get excited by two-photon excitation.
Cyclone laser(blue) vs conventional 100fs laser (red)
Number of mRFP molecules that get excited by two-photon excitation.
Cyclone laser (blue) vs conventional 100fs laser (red)
5.Point Spread Function
Excellent Point Spread Factor:Better than 430nm in the X axis,better than 970nm in the Z axis
Illumination: Cyclone Laser (15-20fs) (900-1200nm).Microscope: Nikon Eclipse Inverted Microscope, A1.Objective
Lens: Nikon´s CFI75 Apochromat 25XC W 1300.Courtesy of Prof. Alberto Diaspro at IIT-Italian Institute ofTechnology, Genoa, Italy
Mouse Intestine
Convallaria Majalis
Green labelling the nuclei and Alexa Fluor 568 phalloidin labelling the actin filaments.
Illumination: Cyclone Laser
Microscope: Home-made
Detector: Hamamatsu H9305-04 PMT
Courtesy of Dr. Pablo Loza at SLN Lab at ICFO (Barcelona), Spain
Two-Photon Microscopy Image. Chloroplasts (green) and cell walls (red).
Projection of a Z-stack
1. Laser for nonlinear optical microscopy
Temporally coherent broadband source, as this laser, constitute an attractive alternative to Titanium–sapphire Lasers. We present a monolithic fiber optic configuration for generating transform-limited temporally coherent pulses and duration as short as 13.0 fs (3.7 optical cycles).
The supercontinuum light is generated by the action of self-phase modulation and optical wave breaking when pumping an all-normal dispersion photonic crystal fiber with pulses of hundreds of fs duration produced by all-fiber chirped pulsed amplification. Avoidance of free-space propagation between stages confers unequalled robustness, efficiency, and cost-effectiveness to this novel configuration. Collectively, the features of all-fiber few-cycle pulsed sources make them powerful tools for applications benefitting from the ultra-broadband spectra and ultra-short pulse durations. Here we exploit these features and the deep penetration of light in biological tissues at the spectral region of 1 mm, to demonstrate the successful performance of Cyclone a Laser in ultra-broadband multispectral and multimodal no-linear microscopy.
1.1 Why is Cyclone the perfect laser for nonlinear microscopy?
Cyclone, the ultra-broadband femtosecond fiber laser, appears as an alternative to Ti:Sa oscillators and OPCPA systems used for the most relevant Nonlinear optics (NLO) microscopy techniques, multiphoton excited fluorescence (MPEF) and second harmonic generation (SHG). Femtosecond laser is compact, air-cooled, turn-key, cost-effective and maintenance and alignment-free.
The two technical specifications of this all-fiber broadband source that makes it perfect for nonlinear microscopy techniques are:
- The few-cycle source, delivers pulses with durations less than 20 fs that increase the efficiency of the excited nonlinear effects by an order of magnitude. Besides, the spectral composition of few-cycle pulses is extremely broad (bandwidths typically > 200 nm for sources operating in the near-IR), further enabling multispectral (simultaneous, if required) NLO microscopy.
- Cyclone delivers femtosecond pulses. This is extremely important as the best trade-off between high photon irradiance and harmless average power levels is offered by lasers delivering pulses with durations in the femtosecond range. Multimodal NLO microscopy usually combines MPEF and SHG for full exploitation of the advantages of both techniques and these advantages rely on the excitation of the samples by laser pulses that provide very high photon irradiances (typically > 10 27 photons s − 1 cm− 2 ), to increase the probability of the rare event of simultaneous absorption of more than one photon by the sample.
1.2 The results of using Cyclone laser for nonlinear microscopy techniques
To analyse the efficiency of the laser we asked Marina Cunquero, from ICFO Institute of Photonic Sciences, in charge of the microscope tests.
Penetration depth assessment
Using the 25x objective under the optimised GVD settings, we have successfully imaged several samples. Importantly, fluorescence signal and depth were achieved using ~4mW of laser power (measured at the sample plane). The maximum penetration achieved corresponds to 220 µm (Figure 3) in depth of the tail of a transgenic line zebrafish embryo (Caax-GFP) expressing GFP in all cell membranes. Zebrafish embryos are transparent, so they allow imaging at this large penetration depths.
Figure 3: TPEF images of the tail of a 2-days-old transgenic line zebrafish embryo (Caax-GFP) expressing GFP in all cell membranes. (A-C) Intensity-normalised images corresponding to 26, 71, 150 µm depth. (D) the complete resliced image of a Z-stack composed of 300 images (0.71 µm step spacing). Scalebar: (A-C) 40 µm; (D) 20 µm.
To test the penetration capabilities of the laser within a scattering tissue, we proceed to image the full retina of a rat (~170 µm) with cellular resolution. Figure 4 shows the comparison of the resliced TPEF images acquired with Cyclone laser (Δλ=200nm, centred at 1060nm) and Coherent MIRA 900 laser (Δλ=10nm, centred at 810nm). Both excised rat retinas were stained with either Alexa Fluor 647-phalloidin and Alexa Fluor 405-phalloidin, being the first one to be excited with the system and while the second one with the Coherent MIRA 900.
Figure 4: Comparison of SCH, now called Cyclone, and Coherent MIRA 900 laser for TPEF imaging of an excised rat retina (retinal ganglion cells side up) stained with Alexa Fluor 647-phalloidin and Alexa Fluor 405-phalloidin, respectively. (A) Reslice of 376 images (0.52 µm step spacing) acquired with laser. (B) Reslice of 404 images (0.50 µm step spacing) acquired with Coherent MIRA 900 laser. Scalebar: 15 µm.
In both cases, the stains were used to visualize the actin of the cytoskeleton of the retinal neurons. We used same laser powers and similar step spacing for constructing the z-stacks. Images were treated in the same way for posterior comparison.
In the image acquired with the system we clearly distinguish the synaptic (bright regions) and nuclear (gap regions) layers that characterize the tissue. It is interesting to mention that the rat retina is highly autofluorescent when illuminated with light in the blue-green spectrum.
In addition, the external segment of the photoreceptor cells where opsins (photopigments) are packaged, is highly absorbent to visible light. Therefore, illumination sources in the IR spectrum combined with red fluorescent dyes are ideal for depth imaging to prevent the autofluorescence generation/distorsions in this tissue. In particular, the laser resulted in a highly efficient system to image these type of samples.
The simplicity, robustness, and cost-effectiveness of Laser configuration are powerful factors in favour of this technology to replace traditional solid-state sources of few-cycle pulses in various applications.
2. Multiphoton Microscopy I: Increasing the Photon Flux with 15 Femtosecond Pulses
Massively increasing the photon flux with shorter excitation pulses (15 fs)
Two-Photon Excitation Fluorescence (TPEF) microscopy (also known as two-photon microscopy) is the method of choice for deep three-dimensional imaging of living tissues. Deep imaging is intrinsic to TPEF microscopy since it uses longer excitation wavelengths (near-IR) that scatter less than the shorter visible wavelengths traditionally used in confocal microscopy. This reduces background illumination coming from the scattered light and increases the contrast ratio at higher depths. As an example, in-vivo brain images at depths of 1mm can be achieved with TPEF microscopy.
Two-photon excitation occurs when two independent photons are absorbed simultaneously by a media. This requires two photons of the right energy to coincide in time and space on such media; an unlikely event which needs an extremely large excitation photon flux. The larger the photon flux, the higher the probability that two-photons will be absorbed simultaneously. In TPEF microscopy, higher photon flux leads to higher efficiency and hence improved image quality and resolution.
Traditionally in TPEF microscopy, the delivery of the large photon flux required for two-photon excitation has been implemented with broadly tunable solid-state femtosecond lasers with pulses of the order of 100 fs and practical repetition rates of approximately 80MHz. These can deliver very high peak powers with large photon flux levels, as needed for two-photon microscopy. However, the average power provided by these lasers (in the range of 1 – 4 Watts) can cause thermal damage as a result of the photo-thermal interaction with the media due to linear absorption of the fundamental excitation wavelength. This effect is particularly important in in-vivo imaging where temperatures in excess of 40 ºC lead to irreversible damage. As a result, the average power provided by traditional solid-state lasers has to be attenuated to be practically used in TPEF microscopy. This has a direct impact on the peak power which is also reduced accordingly.
An alternative to increase the peak power, maintaining the average power low and hence avoiding thermal damage is to shorten the pulse duration. This reduces the time interval in which the photons land on the media, enhancing the probability to be absorbed simultaneously.
Recently, for the first time, state-of-the-art supercontinuum all-fiber laser technology has enabled a commercial laser with pulses as short as 15 fs: Cyclone.
Compared to the traditional 100 fs lasers, Cyclone´s 15 fs pulses lead to an extraordinary 7-fold of photon flux, for equal average power levels.
3. Multiphoton Microscopy II: Brighter Images with Shorter Excitation Pulses
In previous weeks, we showed how an NIR laser such as Cyclone with a pulse duration of 15fs, offers over a 7-fold of photon flux when compared with a standard 100fs laser, for similar repetition rates and average power.
But what is the real impact on the image brightness of such enormous improvement of the number of photons available per time and area?
Theoretically, in two-photon microscopy the image brightness is directly related to the excitation efficiency which is quadratically dependent on the photon-flux and the fluorophore´s second order nonlinear excitation cross-section (GM).
As an example, we can calculate the excitation efficiency of the fluorescent protein mRFP when illuminated at 1050nm by a 15fs laser (such as the cyclone, compared to a 100fs laser. With a wider 200nm bandwidth, the 15fs laser excites mRFP across 900 to 1200nm, a much broader spectral region compared to the 11nm of the 100fs laser.
Blue Curve: Peak power of Cyclone 15fs all-fiber fiber laser centered at 1050nm
Orange Curve: Peak power of 100fs fiber laser centered at 1050nm
Grey Curve: Second-order nonlinear excitation cross Section (GM) of mRFP
Considering the peak power and the excitation cross-section at each wavelength, the excitation efficiency of mRFP can be calculated. The result is that a 50% improvement in efficiency is obtained with a 15fs laser such as the cyclone compared to the traditional 100fs lasers.
Blue Curve: Peak Power of Cyclone 15fs all-fiber fiber laser
Orange Curve: Peak Power of 100fs laser
Grey Curve: Second-Order Nonlinear Excitation Cross Section (GM) of mRFP
multiphoton microscopy
2P fluorescence microscopy images of a mouse intestine section stained with SYTOX Green labelling the nuclei (yellow) and Alexa Fluor 568 phalloidin labelling the actin filaments (blue).
4. Multiphoton Microscopy III: A Novel Concept in Multiphoton Microscopy
Imagine simultaneously imaging a wide range of fluorophores without having to think about selecting the optimum excitation wavelength of your laser. In two-photon microscopy, this is often a complex and sometimes an impossible task when using traditional 100fs excitation lasers.
Transform-limited 100fs solid-state lasers emitting in the IR have a spectrum in the range of 10 – 20nm and as a result, they can only simultaneously excite fluorophores whose excitation spectra falls within this 10-20nm spectrum.
To simultaneously excite a larger variety of fluorophores with a single laser, lasers with broader bandwidths and shorter pulse durations are required.
For example, a laser with 15 fs pulses, such as Cyclone laser, centered at 1050nm, delivers 15fs pulses and a bandwidth of 200nm. All green and red fluorophores within this bandwidth (which extends across 900 to 1200nm) can be excited simultaneously by such laser.
This makes simultaneous imaging of multiple fluorophores a viable, practical and simple alternative for two-photon microscopy.
Two-Photon Fluorescence Microscopy Image of a Mouse Intestine. Section stained with
Sytox Green: labelling the nuclei (magenta). FITC Filter
Alexa Fluor 568 Phaloidin: labelling the actin filaments (green). TRITC Filter
Both fluorescent markers were simultaneously excited with Cyclone and fluorescence was filtered with Nikon´s fluorescence cubes.
Image taken at ICFO-SLN the Super-Resolution Light Microscopy at ICFO-Institute of Photonics Sciences, Barcelona, Spain.
Acknowedgements to Sphere Photonics for the D-SCAN pre-compressor
5. New Horizons in Two-Photon Microscopy
Cyclone is a new class of femtosecond fiber laser for two-photon microscopy. It is a new proposal, it is differential. Powered at the core by proprietary technology, it enables the simultaneous excitation of the largest variety of fluorescent probes. It provides images with higher brightness. It introduces a new era of simplicity and cost.
Cyclone provides an extremely wide spectral bandwidth which expands in the NIR across the 900-1200nm spectrum. This overlaps with the two-photon excitation spectra of most green and red-shifted fluorescent labels, including eGFP, mRFP and DsRED. This remarkably exceeds the range of fluorescent labels that can be simultaneously excited with conventional femtosecond lasers, including broadly tunable lasers and single-line femtosecond fiber lasers.
Cyclone offers a highly flexible and versatile solution or two-photon excitation fluorescence microscopy, enhancing the features that can be imaged simultaneously on a sample, of particular importance for in-vivo and ex-vivo microscopy.
An image of a pollen grain using the pollen autofluorescence excited by the Cyclone laser shows the great image quality and simultaneous excitation at different spectral channels.
Not only the spectrum is broader but Cyclone also delivers shorter pulses. Combined with a dedicated state-of-the-art dispersion pre-compensator, pulses of the order of 15-20fs can be delivered on the microscope sample plane. This leads to an extraordinary peak power and an unparalleled photon flux at the sample plane, reaching more than 7-fold the photon flux of conventional femtosecond lasers with pulses in the range of 100-200fs.
The larger photon flux associated to the superior Cyclone peak power leads to an increased number of photons that reach the sample per area and time. This enhances the two-photon excitation efficiency up to a 49-fold when compared with conventional fixed-wavelength or broadly tunable lasers with pulse durations in the range of 100-200 fs. When used with fluorescent label DsRED, over a 50% efficiency is achieved.
The red-shifted NIR wavelengths of Cyclone laser combined with the increased excitation efficiency leads to better image brightness and deeper penetration. A 200 microns deep sample of a zebra fish is simply imaged by the Cyclone laser.
Cyclone broad spectral bandwidth not only enables the excitation of a large range of indicators but it also permits the multicolor excitation across the 900-1200 nm range with a single scan, making simultaneous excitation of different probes possible. This eliminates microscope alignment issues associated to broadly tunable lasers.
Images of a mouse intestine and a convallaria illustrate the great image quality that can be achieved when illuminating these samples with the broad bandwidth of the Cyclone laser.
Cyclone delivers a bandwidth of 200 nm, across the 900-1200nm spectral range, with pulses of 15 fs and a repetition rate of 75MHz, enhancing two-photon excitation and enabling the individual or simultaneous excitation of bountiful indicators.
We are here for you!
Want to stay closer to the Market Dynamics and Technological Developments? Just take 5 seconds to Sign In as a member of SIMTRUM, we will bring you the most up-to-date news.
(Sign in button on the top right of the screen).
Company
Light Analysis
Microscope
Light Sources
Imaging
Optics