SIMTRUM Photonics Store

Sign In

  • Forgot your password?
  • Need a new account?

Register


BSI Cooled High Sensitivity Spectrometers 200-1100nm

The MC Series BSI (Backside Illuminated) Cooled High Sensitivity Spectrometer is an optical fiber spectrometer with thermoelectric internal cooling technology. It uses a high-resolution optical platform and has both high resolution and low noise capabilities, making it especially suitable for low-light detection occasions that require long exposure (such as fluorescence Signal detection and Raman signal detection occasions). Complementing the TEC system, the MC Series has an excellent Signal to Noise Ratio, down to 0.41nm FWHM optical resolution, and a SMA905 fiber connector. This is a popular model employed for Angular-Resolved Spectroscopy and Fluorescence/Raman Spectroscopy. The cooled optical fiber spectrometer employs a cooled 2D CCD array with a peak quantum efficiency of 95%. 



image.png

Up to 1000:1 SNR -  the MC Sereis cooled optical fiber spectrometer utilises Hamamatutsu Thermoelectric cooled detector reducing temperatures by up to  40℃ , suppressing the dark current noises and greatly improve the signal to noise ratio


Up to 95% peak quantum efficiency - M Sereis cooled detector fiber spectrometer uses a special back thinning technique where light is introduced from the rear surface to section PN, improving the quantum conversion efficiency, especially the quantum conversion efficiency in the ultraviolet band




Product specifications and Brochures

Product Brochure Link:  

Model Wavelength Range200 - 1100nm
Optical ResolutionUp to 0.25nm based on different slit size and grating
Integration Time7ms ~ 30min
Dynamic Range10,000:1
Signal to Noise Ratio1,000:1 when Saturated
Correction Linearity>99%
Detector ModelHamamatsu,  S7031, 1044 * 64 pixels, back-illuminated, refrigerated 2d array,
Pixel1064 x 64
Size / Weight180.5 × 115.2 × 46.8 mm³ / 1.328kg
Fiber InterfaceSMA905 or FC/PC optional
A/D Resolution16 bits
Data TransmissionUSB2.0, RS232
Step Drawings


Configuration Example


364.87 ~ 1044.91 nm / Slit 25 µm / FWHM 0.66 nm @794 nm


MC Series Wavelength, Slit and Optical Resolution Specifications

ModelWavelength RangeGrating Scribe / Blaze WavelengthSlit Width
10 um25 um50 um100 um200 um
Optical Resolution FWHM
MC/200-1000200-1000nm300/300nm &550nm1.6nm1.7nm1.8nm3nm6nm
MC/300-1100300-1100nm300/300nm & 550nm1.6nm1.7nm1.8nm3nm6nm
MC/400-930400-930nm400/500nm1.4nm1.5nm1.6nm2.6nm5nm
MC/350-740350-740nm600/500nm0.9nm1nm1.2nm1.6nm3nm
MC/530-630530-630nm1800/500nm0.25nm0.3nm0.4nm0.5nm1nm
MC/710-1050710-1050nm600/800nm0.9nm1nm1.2nm1.6nm3nm
MC/780-1030780-1030nm830/900nm0.55nm0.6nm0.7nm0.95nm1.8nm


Product Size





Raman Microscopy In The Characterization Of Graphene


Graphene-1.png

                      Figure 1, Graphine and carbon allotrope 


Graphene-2.png

                                  Figure 2, The Raman spectra of graphene with different layer numbers, the change of G peak with the 

                                  number of layers (left) [1], the change of G'peak with the number of layers (right) [2]


Graphene is a new type of advanced material composed of a single layer of highly crystalline graphite, and it is the basic unit for the construction of other carbon alloisomerism (Figure 1). The Raman spectrum of graphene mainly includes G peak (near 1580cmˉ¹), G′ peak (near 2700cmˉ¹) and D peak (near 1350cmˉ¹ wave number). Among them, G peak and G′ peak can be used for characterization The number of layers of graphene. The G peak can effectively reflect the number of graphene layers. As the number of layers increases, the peak position of the G peak will shift to low frequencies. The perfect single-Lorenz-shaped second-order Raman peak (G′ peak) is a simple and effective method to determine single-layer graphene, but when the number of layers is greater than 1, the relationship between the number of graphene layers and the G′ peak will be It becomes more complicated.



Application In Nano-antenna And Optical Microcavity

 

3.png

            Figure 3, a) Virtual image of a 3D structured nano-antenna; 

                           b) SEM image of one of the structured antennas  

4.png

           Figure 4, Schematic diagram of the structure of the nano-antenna, 

           electric field intensity distribution diagram, reflectivity, chromaticity 

           diagram  

5.png

                 Figure 5, Micro-cavity nano-antenna reflectivit

                 (theoretical value and test value), 

                 color diagram, chromaticity diagram


This an arrangement based on a periodic three-dimensional microcavities nano antenna, the antenna in the excited state can form surface plasma waves, whereby these waves can help change the colour of the plasma material (Figure 3). The experiment proved that the material could achieve colour adjustment through the incident excitation angle and polarization state, by proposing a colour mixing scheme based on the coupling characteristics of the plasmonic cavity of the optically functionalized surface (Figure 4). In order to prove that the three-dimensional microcavity nanoantenna described in this article can modulate the spectral reflectance characteristics by the angle of incident light, and correspondingly present the corresponding colour, after much theoretical calculations and experimental verification, the experimental results verify the correctness of the theoretical calculation data ( Figure 5).


Application Of Micro-area Spectrum In Structural Colour And Full Colour Printing Research


8.png

         Figure 6, The monolithic integrated schematic diagram of Van Gogh's 

         painting "Sunflower" reconstructed by interferometric panchromatic 

         printing and the asymmetric FP resonant cavity


The experiment starts by constructing an asymmetric metal-medium-metal FP resonant cavity structure. (Figure 7). First, an Al layer with a thickness of about 100 nm is formed by electron beam evaporation. Secondly, a layer of HSQ photoresist is spin-coated on the Al substrate, and then the photoresist is exposed through the electron beam lithography system (EBL). The exposed photoresist after development can remain on the Al substrate. The length of the exposure time determines the thickness of the remaining photoresist. Then deposit a layer of 6nm thick metal Ni, and finally form the FP resonant cavity of different thickness. Compared with the traditional Plasmonic Colour Pixel (Plasmonic Colour Pixel), the interferometric colour pixel constructed as above has significant advantages. Interferometric colour pixels can not only form fine micro-size pixels through Nanopatterning Technique, but also use Grayscale Photolithography [2] for large-area colour applications. From a manufacturing point of view, in order to form stable colours, plasma colour pixels need to spend too much cost to obtain high-precision nano-patterns.

6.png

          Figure 7, Flow chart of constructing an asymmetric metal-medium

          -metal FP resonant cavity structure



In order to obtain a palette that covers the full colour gamut, the experiment used 1μm 2 pixel size (P, Figure 6, the same below), and focused on the FP resonant cavity duty cycle (determined by D) and its dielectric layer thickness (t) The effect of fineness has been systematically studied. The research (Figure 7) shows that by increasing the exposure dose and then increasing the thickness of the dielectric layer, the colour of the FP resonant cavity in the bright field can be gradually changed from blue to green, and finally to red; and by increasing the duty cycle, the light The field colour becomes more and more vivid, its saturation (Saturation) and brightness (Brightness) are improved. What is particularly striking is that when the fixed thickness does not change, the colour changes with the change of the duty cycle of the FP resonant cavity. These phenomena provide a wealth of means for toning and then realizing full-colour printing. 

7.png

Figure 8, the whole process of building a colour pattern at the micro-nano scale

In order to show the range of colours that can be expressed by this interferometric structural colour, the experiment was established with a set of operational procedures. First, by adjusting the duty cycle and thickness, the colour palette is established (Figure 8a). Secondly, through the duty cycle and thickness parameters of each pixel in the colour palette (Figure 8b), and the chromaticity in bright field, a "chromaticity-lithography parameter relationship table" (Figure 8c) is established. Furthermore, according to the above relationship table, the colour of each pixel of the pattern that needs to be expressed is translated into actual lithography parameters, and finally multi-level grayscale lithography is performed (Figure 8d). In order to demonstrate the colour reproduction ability of this new interferometric full-colour printing technology at the nano-scale, the experiment was the completion of Van Gogh's paintings "Sunflower" and "Self-Portrait" by using nano-printing.



NameModelWavelength RangeDetectorResolutionNoise RatioDynamic Range

High Resolution Spectrometer

L Sereis200-1100nmHamamatsu,S11639,2048 pixels<1nm customizable500:12000:1

High Resolution Spectrometer

H Series200-1100nmHamamatsu,S11639,2048 pixels<1nm customizable500:12000:1

Back Illuminated Spectrometer

M Series200-1100nmHamamatsu,S10420,64×2048 pixels<1nm customizable800:15000:1

Hi Sensitivity Cooled Spectrometer 

MC Serie200-1100nmHamamatsu,S7031,64×1044 pixels<1nm customizable1000:110000:1

Handheld Raman System 

RM785/1064nm

Band Range 

200-3200cm-1/ 200-2500cm-1

6 - 8 cm-1

Portable Tabletop Raman System

RMT EZ785nmBand Range  200-3200cm-1
7 cm-1  typical

Portable Tabletop Raman System

RMT532/785/1064nm

Band Range 

200-3200cm-1/200-1800cm-1

8 - 9 cm-1 typical


Cooled NIR Spectrometer 

N Series900-2200nmHamamatsu, G11477up to 8nm
@10um slit width
15000:115000:1

MWIR Spectrometer 

MWIR Series1-5umPbS or PbSe  256 pixels10-30nm20 RMS

Imaging Spectrometer 


240 -1100nm2046 x 1542, 2448 x 2048, 5472 x 34780.44 to 0.66nm


Accessories

For more information on customized accessories, please contact us info@simtrum.com

Model   No.TypeWavelengthCore DiameterLength# of FiberConnector
I1000-S/S-L2Optic Fiber360~2500 nm1000 μm2 m1SMA905-SMA905
V1000-S/S-L2200 ~ 1100 nm1000μm2 m1SMA905-SMA905
DV600-S/S-L2190~1100 nm600μm2 m1SMA905-SMA905
I600-S/S-L2360~2500 nm600μm2 m1SMA905-SMA905
V600-S/S-L2200 ~ 1100 nm600μm2 m1SMA905-SMA905
DV400-S/S-L2190~1100 nm400μm2 m1SMA905-SMA905
I400-S/S-L2360~2500 nm400μm2 m1SMA905-SMA905
V400-S/S-L2200 ~ 1100 nm400μm2 m1SMA905-SMA905
DV200-S/S-L2190~1100 nm200μm2 m1SMA905-SMA905
I200-S/S-L2360~2500 nm200μm2 m1SMA905-SMA905
V200-S/S-L2200 ~ 1100 nm200μm2 m1SMA905-SMA905
DV100-S/S-L2190~1100 nm100μm2 m1SMA905-SMA905
I100-S/S-L2360~2500 nm100μm2 m1SMA905-SMA905
V100-S/S-L2200 ~ 1100 nm100μm2 m1SMA905-SMA905
I1000-Y*2-S/S-L2

Bifurcated Fiber,

 Y-bundle : 2 fibers

360~2500nm1000μm2 mA-2nos, B1-1nos, B2-1nosA-SMA905 / B1-SMA905 / B2-SMA905
V1000-Y*2-S/S-L2200 ~ 1100 nm1000μm2 mA-2nos, B1-1nos, B2-1nosA-SMA905 / B1-SMA905 / B2-SMA905
DV600-Y*7-S/S-L2190~1100 nm600μm2 mA-7nos, B1-1nos, B2-6nosA-SMA905 / B1-SMA905 / B2-SMA905
I600-Y*7-S/S-L2360~2500nm600μm2 mA-7nos, B1-1nos, B2-6nosA-SMA905 / B1-SMA905 / B2-SMA905
DV600-1*7-S/S-L2Multi-core Fiber190~1100 nm600μm2 m7SMA905-SMA905
I600-1*7-S/S-L2360~2500nm600μm27SMA905-SMA905



Integrating Sphere

Wavelength 250 - 2500 nm

Output port customizable

Black anodized aluminum alloy housing

Gold Coated Integrating Spheres

Wavelength 1000 - 5000 nm

Electrochemically plated diffuse reflective film coating

Halogen Light Source

Wavelength 360 - 2500 nm

Long lifetime, typically 10,000 hours

SMA905 output connector

Deuterium UV Light Source

Wavelength 190 - 400 nm

Long lifetime, typically 1500 hours

SMA905 output connector

Sample Holder with Mounting for Transmittance MeasurementSample Holder with Mounting for Reflectance Measurement
Cuvette HoldersOptical Mount for Transmittance and Reflectance Sample Measurement

Fiber Optic Attenuator

Wavelength 200 - 2500 nm

Adjustable slit for attenuation

Fiber Collimator

Wavelength 185 - 2500 nm

Numerical aperture 0.22 - 0.37 NA,

fiber core diameter ≥ 100 µm

Automatic Quotation Generation (Recommended)

To generate an automatic quotation request please login using the Sign In button (top right of the screen). 

New users will be given the opportunity to register. Join our mailing list and follow us on linkedin for constant updates.


Email Quotations 

For technical assistance, custom orders or email quotations, drop us an email at info@simtrum.com.

We will get back to you within 1 working days.


Local Same Day Service

-Singapore Main office:  Call us at +65 6996 0391 Office Hours: 9am - 6pm (+8GMT)
-China Shanghai Main office:Call us at +86 1500085 3620. Office Hours: 9am - 6pm (+8GMT)
For Other Internation sales office  
click here.


Spectroscopy & Microscopy Solution

Check our solution page Spectroscopy Solutions | Microscopy Solutions


Wavelength (nm)


Search Reset
Compare Model Drawings & Specs Wavelength (nm) 25um Slit Optical Resolution (nm) 50um Slit Optical Resolution (nm) Availability Reference Price
(USD)
MC/200-1000
High Sensitivity Cooled Spectrometer, MC-series, Wavelength: 200-1000nm
1.71.8 4-6 Weeks $14545.00
MC/300-1100
High Sensitivity Cooled Spectrometer, MC-series, Wavelength: 300-1100nm
1.71.8 4-6 Weeks $14545.00
MC/400-930
High Sensitivity Cooled Spectrometer, MC-series, Wavelength: 400-930nm
1.51.6 4-6 Weeks $12974.00
MC/350-740
High Sensitivity Cooled Spectrometer, MC-series, Wavelength: 350-740nm
11.2 4-6 Weeks $12821.00
MC/530-630
High Sensitivity Cooled Spectrometer, MC-series, Wavelength: 530-630nm
0.30.4 4-6 Weeks $12821.00
MC/710-1050
High Sensitivity Cooled Spectrometer, MC-series, Wavelength: 710-1050nm
11.2 4-6 Weeks $12821.00
MC/780-1030
High Sensitivity Cooled Spectrometer, MC-series, Wavelength: 780-1030nm
0.60.7 4-6 Weeks $12821.00

MC/780-1030 - Parameter

Wavelength (nm)

25um Slit Optical Resolution (nm)
0.6

50um Slit Optical Resolution (nm)
0.7

Integration Time
7ms-30min

MC/710-1050 - Parameter

Wavelength (nm)

25um Slit Optical Resolution (nm)
1

50um Slit Optical Resolution (nm)
1.2

Integration Time
7ms-30min

DV600-1*7-S/S-L2 - Parameter

I600-1*7-S/S-L2 - Parameter

I600-Y*7-S/S-L2 - Parameter

DV600-Y*7-S/S-L2 - Parameter

V1000-Y*2-S/S-L2 - Parameter

I1000-Y*2-S/S-L2 - Parameter

V100-S/S-L2 - Parameter

I100-S/S-L2 - Parameter

DV100-S/S-L2 - Parameter

V200-S/S-L2 - Parameter

I200-S/S-L2 - Parameter

DV200-S/S-L2 - Parameter

V400-S/S-L2 - Parameter

I400-S/S-L2 - Parameter

DV400-S/S-L2 - Parameter

V600-S/S-L2 - Parameter

I600-S/S-L2 - Parameter

DV600-S/S-L2 - Parameter

V1000-S/S-L2 - Parameter

I1000-S/S-L2 - Parameter

MC/530-630 - Parameter

Wavelength (nm)

25um Slit Optical Resolution (nm)
0.3

50um Slit Optical Resolution (nm)
0.4

Integration Time
7ms-30min

MC/350-740 - Parameter

Wavelength (nm)

25um Slit Optical Resolution (nm)
1

50um Slit Optical Resolution (nm)
1.2

Integration Time
7ms-30min

MC/400-930 - Parameter

Wavelength (nm)

25um Slit Optical Resolution (nm)
1.5

50um Slit Optical Resolution (nm)
1.6

Integration Time
7ms-30min

MC/300-1100 - Parameter

Wavelength (nm)

25um Slit Optical Resolution (nm)
1.7

50um Slit Optical Resolution (nm)
1.8

Integration Time
7ms-30min

MC/200-1000 - Parameter

Wavelength (nm)

25um Slit Optical Resolution (nm)
1.7

50um Slit Optical Resolution (nm)
1.8

Integration Time
7ms-30min

MC/780-1030 - Download

MC/710-1050 - Download

DV600-1*7-S/S-L2 - Download

I600-1*7-S/S-L2 - Download

I600-Y*7-S/S-L2 - Download

DV600-Y*7-S/S-L2 - Download

V1000-Y*2-S/S-L2 - Download

I1000-Y*2-S/S-L2 - Download

V100-S/S-L2 - Download

I100-S/S-L2 - Download

DV100-S/S-L2 - Download

V200-S/S-L2 - Download

I200-S/S-L2 - Download

DV200-S/S-L2 - Download

V400-S/S-L2 - Download

I400-S/S-L2 - Download

DV400-S/S-L2 - Download

V600-S/S-L2 - Download

I600-S/S-L2 - Download

DV600-S/S-L2 - Download

V1000-S/S-L2 - Download

I1000-S/S-L2 - Download

MC/530-630 - Download

MC/350-740 - Download

MC/400-930 - Download

MC/300-1100 - Download

MC/200-1000 - Download

Accessories

Compare Model Drawings & Specs Availability Reference Price
(USD)
I1000-S/S-L2
Optic Fiber, Wavelength 360-2500 nm, Number of Fiber 1nos, Core Diameter 1000 um, Length 2M, Connector SMA905-SMA905, Package PVC
2-3 Weeks Request for quote
V1000-S/S-L2
Optic Fiber, Wavelength 200-1100 nm, Number of Fiber 1nos, Core Diameter 1000 um, Length 2M, Connector SMA905-SMA905, Package PVC
2-3 Weeks Request for quote
DV600-S/S-L2
Optic Fiber, Wavelength 190-1100 nm, Number of Fiber1nos, Core Diameter 600 um, Length 2M, Connector SMA905-SMA905, Package 5.5 Blue armored tubing
2-3 Weeks Request for quote
I600-S/S-L2
Optic Fiber, Wavelength 360-2500 nm, Number of Fiber 1nos, Core Diameter 600 um, Length 2M, Connector SMA905-SMA905, Package PVC
2-3 Weeks Request for quote
V600-S/S-L2
Optic Fiber, Wavelength 200-1100 nm, Number of Fiber 1nos, Core Diameter 600 um, Length 2M, Connector SMA905-SMA905, Package PVC
2-3 Weeks Request for quote
DV400-S/S-L2
Optic Fiber, Wavelength 190-1100 nm, Number of Fiber 1nos, Core Diameter 400 um, Length 2M, Connector SMA905-SMA905, Package PVC
2-3 Weeks Request for quote
I400-S/S-L2
Optic Fiber, Wavelength 360-2500 nm, Number of Fiber 1nos, Core Diameter 400 um, Length 2M, Connector SMA905-SMA905, Package 5.5 blue armored tubing
2-3 Weeks Request for quote
V400-S/S-L2
Optic Fiber, Wavelength 200-1100 nm, Number of Fiber 1nos, Core Diameter 600 um, Length 2M, Connector SMA905-SMA905, Package 5.5 blue armored tubing
2-3 Weeks Request for quote
DV200-S/S-L2
Optic Fiber, Wavelength 190-1100 nm, Number of Fiber 1nos, Core Diameter 200 um, Length 2M, Connector SMA905-SMA905, Package PVC
2-3 Weeks Request for quote
I200-S/S-L2
Optic Fiber, Wavelength 360-2500 nm, Number of Fiber 1nos, Core Diameter 200 um, Length 2M, Connector SMA905-SMA905, Package PVC
2-3 Weeks Request for quote
V200-S/S-L2
Optic Fiber, Wavelength 200-1100 nm, Core Number 1nos, Core Diameter 200 um, Length 2M, Connector SMA905-SMA905, Package PVC
2-3 Weeks Request for quote
DV100-S/S-L2
Optic Fiber, Wavelength 190-1100 nm, Core Number 1nos, Core Diameter 100 um, Length 2M, Connector SMA905-SMA905, Package PVC
2-3 Weeks Request for quote
I100-S/S-L2
Optic Fiber, Wavelength 360-2500 nm, Core Number 1nos, Core Diameter 100 um, Length 2M, Connector SMA905-SMA905, Package PVC
2-3 Weeks Request for quote
V100-S/S-L2
Optic Fiber, Wavelength 200-1100 nm, Core Number 1nos, Core Diameter 100 um, Length 2M, Connector SMA905-SMA905, Package PVC
2-3 Weeks Request for quote
I1000-Y*2-S/S-L2
Bifurcated Fiber, Y-bundle: 2 fibers , Wavelength 360-2500 nm, Core Diameter 1000 um, Length 2M, Connector SMA905-SMA905, Package 6.0 armored tubing
2-3 Weeks Request for quote
V1000-Y*2-S/S-L2
Bifurcated Fiber, Y-bundle: 2 fibers, Wavelength 200-1100 nm, Core Diameter 1000 um, Length 2M, Connector SMA905-SMA905, Package 6.0 armored tubing
2-3 Weeks Request for quote
DV600-Y*7-S/S-L2
Bifurcated Fiber, Y-bundle: 7 fibers, Wavelength 190-1100 nm, Core Number A-7nos, B1-1nos, B2 - 6nos, Core Diameter 600 um, Length 2M, Connector SMA905-SMA905,Package PVC
2-3 Weeks Request for quote
I600-Y*7-S/S-L2
Bifurcated Fiber, Y-bundle: 2 fibers , Wavelength 360-2500 nm, Core Diameter 600 um, Length 2M, Connector SMA905-SMA905, Package PVC
2-3 Weeks Request for quote
I600-1*7-S/S-L2
Multi-core Fiber, Wavelength 360-2500 nm, Number of Fiber 7nos, Core Diameter 600 um, Length 2M, Connector SMA905-SMA905, Package PVC
2-3 Weeks Request for quote
DV600-1*7-S/S-L2
Multi-core Fiber, Wavelength 190-1100 nm, Core Number 7nos, Core Diameter 600 um, Length 2M, Connector SMA905-SMA905, Package PVC
2-3 Weeks Request for quote